

INSTITUTO POLITÉCNICO NACIONAL

Centro De Estudios Científicos Y Tecnológicos

Wilfrido Massieu

LABORATORIO DE FÍSICA II

	ALUMNO		GRUPO	EQUIPO
]	PROFESOR:		FECHA	CALIF
I.	NOMBRE: ELASTI		TICA No. 5	
II.	OBJETIVOS:	> Interpr	etar el fenómeno de la E	lasticidad.
		> Compr	obar experimentalmente	la Ley de Hooke.
		Determalambr	•	e el módulo de Young en un
		> Aplica	r la Ley de Hooke en la i	resolución de problemas tipo.
		Aplica	r la ecuación del módul	o de Young en la resolución de
		proble	mas tipo.	
III.	MATERIALES:	 Aparat 	o de M6dulo de Young	
		• Balanz	a de resorte	
		 Calibra 	ndor	
		• Marco	de pesas	
IV.	REFERENCIAS BIBLI	OGRAFICAS: •	Física Fundamental, t Editorial C.E.C.S.A.	omo I, Felix, Velasco.

- Física, Wilson.
 - Editorial Prentice Hall.
 - Segunda edición.
- Física Moderna, H.E. White. Editorial Montaner y Simon.
- Física conceptual, Paul G. Hewitt. Editorial Addison Wesley.
- Física, conceptos y aplicaciones, Tippens. Editorial Mc Graw Hill. Quinta Edición.

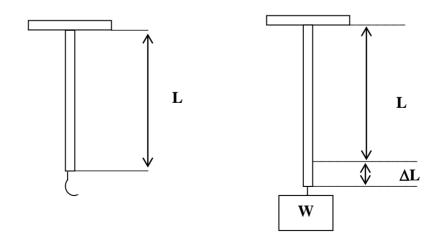
ANALISIS GENERAL DE LA PRACTICA:

Cuando un cuerpo, un resorte por ejemplo, se somete a una fuerza, dicho cuerpo se deforma; si al cesar la fuerza, la deformación desaparece, esta deformación se llama <u>elástica</u>. Cuando la fuerza es suficientemente grande y la deformación no desaparece (total ó parcialmente) se llama deformación inelástica.

La Ley de Hooke dice que las fuerzas deformadoras son directamente proporcionales a los alargamientos elásticos. Matemáticamente se expresa así: $F = E \Delta L$, donde F es la fuerza deformadora; ΔL es el alargamiento del resorte y E es una constante llamada módulo de alargamiento del resorte.

La Ley de Hooke, aplicada al alargamiento elástico de un alambre se enuncia así:

La fuerza unitaria
$$(\frac{F}{A})$$
 aplicada, es directamente proporcional a la deformación unitaria $(\frac{\Delta L}{L})$ o sea:

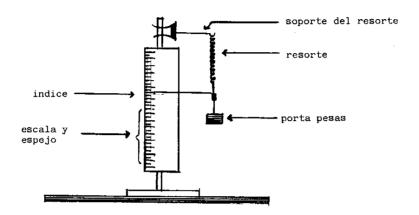

Fuerza unitaria α Deformación unitaria.

Introduciendo una constante de proporcionalidad (Y) tendremos:

Fuerza unitaria = Y Deformación unitaria.

$$\therefore Y = \frac{F/A}{\Delta L/L}$$

Donde Y es el módulo de Young, F es la fuerza aplicada, A es el área de sección transversal del alambre, ΔL es el alargamiento correspondiente a la longitud L que es la longitud inicial del alambre y "Y" es el módulo de elasticidad del alambre ó módulo de Young, y depende del material del que esté constituido el alambre, sus valores vienen dados en tablas con unidades de Kg/mm², Dinas/cm, lb/pg.², etc.



V. DESARROLLO DE LA PRACTICA:

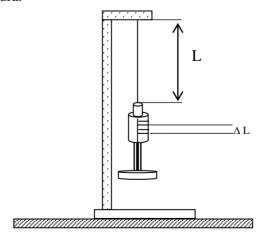
EXPERIMENTO I. LEY DE HOOKE.

PROCEDIMIENTO:

1. Se monta el aparato de la figura.

- 2. Se ajusta el índice en O, subiendo o bajando la escala.
- 3. Se agregan pesas de 10 en 10 gramos, anotando los valores de las fuerzas F y alargamiento L, en la tabla (evitando el error de paralaje).
- P.1- ¿Con qué fin se ha dibujado la escala del aparato de la Ley de Hooke sobre un espejo?

4. Calcula la tercera columna de la tabla siguiente:


FUERZA "F"	$\Delta extbf{L}$	$\mathbf{E} = \mathbf{F}/\Delta \mathbf{L}$
(Kg _F)	(mm)	(Kg _F /mm)
L		

P.3- ¿Qué nos indica la tercera columna de la tabla anterior?		
5. Con los datos de la tabla anterior, construye la gráfica F vs ΔL.		
$F \\ (g_F)$		
(mm)		
P.4- ¿Qué se obtiene al graficar los valores de la tabla?		
P.5- ¿Cómo es la pendiente de esta gráfica?		
P.6- ¿Qué podemos concluir de este experimento?		

EXPERIMENTO II.- DETERMINACIÓN DEL MÓDULO DE YOUNG.

PROCEDIMIENTO:

1. Se monta el aparato de la figura.

2	Se mide la	longitud	del alambre	en estudio	en mm
∠.	oc imac ia	mgnuu	uci aiaiiibic	cii cstudio	CII IIIIII

- 3. Mediante un Vernier se mide el diámetro del alambre y se calcula su área de sección transversal. A =
- 4. Sobre el porta pesas se coloca una pesa.
- 5. Haciendo uso de un vernier (con el vástago de profundidades) se mide el desplazamiento del cilindro macizo con respecto al cilindro hueco; tomando la lectura ΔL.
- 6. Se coloca otra pesa sobre la anterior y se repite el paso 5.
- 7. Se coloca una tercera pesa y se repite el paso 5.
- 8. Se coloca una tercera pesa y se repite el paso 5.
- 9. Los valores obtenidos en 2,3,5,6,7 y 8 se colocan en la siguiente tabla.

L(mm)	A(mm ²)	F(Kg _F)	ΔL(mm)	$Y = \frac{FL}{A \triangle L} (Kg_F/mm^2)$

10. Se	obtiene el p	oromedio d	le los 4 valo	ores de Y=		
P.8- ¿0	Qué nos indi	ca este val	or?		 	
VI.	CUESTIC	ONARIO:				
ine				deformaciones		las

. Obtenga el valor	el m6dulo de Young?de la tangente de la gráfica de sí? Y ¿por qué?	del experimento 1 y co	mpárela con el valor de E de la ta
F 1 1 1 1			
. Escriba el valor de	el m6dulo de Young para los Hierro:	siguientes materiales:	
_	Cobre:		
	Acero:		
	Aluminio:		
	Bronce:		
II. CONCLUSI	ONES:		